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ABSTRACT 

A new method, which allows the determination of the mechanism of a decomposition 
reaction of solids and leads to reliable kinetic parameters, is proposed. The test of the validity 
of the method is performed with seven simulated TG and DTG curves. 

INTRODUCTION 

Nonisothermal methods for determining kinetic parameters offer interest- 
ing advantages over conventional isothermal studies [l]: only a single sample 
and. fewer data are required and the kinetics can be calculated over an entire 
temperature range in a continuous manner. Also, if the sample undergoes 
considerable reaction when the temperature is raised to the optimal, the 
results obtained by an isothermal method are often questionable. 

A disadvantage of the nonisothermal method, when compared with the 
isothermal one, is that the reaction mechanism cannot usually be de- 
termined, and, hence, the meaning of the kinetic parameters is uncertain. 

On the other hand, the most widely used commercial apparatus for 
thermal analysis are equipped with linear temperature programmers. In 
these conditions the methods usually employed for kinetic analysis [2-91 
lead to ambiguous results, especially if the studied reaction follows a 
diffusion-controlled kinetic law. 

As known, the rate of a reaction of thermal decomposition of solids can 
be expressed by the general equation 

da - = A e-E/RTf( a) 
dt 

where f(a) is a function which depends on the actual reaction mechanism. 
When the temperature of the sample is increased at a constant rate, 

dT 
P=,, 
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we can write 

da A 
dT = 3 exp( - E/RT)f( a) 

and, by integration, 

g(a) =%s = $jrrexp(-E/RT) dT 

(2) 

(3) 

By differentiating the logarithmic form of eqn. (1) with respect to 
d(ln(l - a)), we obtain 

d(ln(da/dT)) = E d(l/T) d(ln f(a)) -- 
d(ln(l - a)) R d(ln(1 - a)) + d(ln(1 - a)) 

or 

A(ln(da/dT)) = E A(l/T) A(ln f(a)) -- 
A(ln(1 - a)) R A(ln(1 - a)) + A(ln(1 - a)) (4) 

The Freeman and Carroll method [3] is based on eqn. (4), assuming 

f(a) = (1 - a)” (5) 

However, according to Criado et al. [lo], the linear representations based 
on eqn. (4) lead to a straight line, even when the mechanism of the reaction 
cannot be represented by eqn. (5). Therefore, this method does not allow one 
to determine if a reaction is obeying an “nth order” kinetic law or a 
different one. 

THEORY 

We can write eqn. (4) in the form 

A(ln(da/dT)) - A(ln f(a)) = E A(l/T) -- 
A(ln(1 - a)) R A(ln(1 - a)) 

(6) 

and, thus, the plots of the left-hand side of eqn. (6) against A(l/T)/Aln 
(1 - a) should be a straight line with a slope of -E/R, irrespective of the 
f(a) employed. However, we can select the f(a) that best fit the actual 
mechanism of the studied reaction by means of the intercept value, which, in 
an ideal agreement with eqn. (6), should be zero. 

In order to test the validity of the above considerations, we have con- 
structed both the TG and DTG curves corresponding to the seven mecha- 
nisms listed in Table 1, using the following kinetic parameters: E = 125.4 kJ 
mall’ (30 kcal mol-‘), A = 1013 s-l and a heating rate of 10 K mm’. The 
integration of the Arrhenius equation was performed by a third-order 
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TABLE I 

Kinetic equations used for the construction of the simulated decomposition reactions 

Mechanism q(cu) f(a) Rate-controlling process 

Dl a2 l/201 Uni-dimensional diffusion 

D2 a+(l-a)ln(l-cr) (-ln(l-a))-’ Bi-dimensional diffusion 

D3 (1 -(l- (Y)1’3)2 3/2(1- CX)~‘~ Three-dimensional diffusion: 

1 - (I- (Y)1’3 
Jander equation 

D4 1-2/3~x-(l-a)~‘~ (3/2(1- (Y)-~/~)-~ Three-dimensional diffusion: 

Ginstling-Brounshtein equation 

Fl - ln(1 - a) (1-a) Random nucleation 
R2 1 - (1 - ,)1’2 2(1- ly)1’2 Phase-boundary reaction 

(cylindrical symmetry) 
R3 1 - (1 - (Y)l’3 3(1- a)2’3 Phase-boundary reaction 

(spherical symmetry) 

rational approximation, developed by Senung and Yang [ll], with an 
accuracy better than 10W2%: 

J ‘exp(--E/RT) dT= Ee-” 
x2 + 10x + 18 

0 R x x3+12x2+ 36x+24 

For each of these seven simulated decompositions, we have performed the 
kinetic analysis using eqn. (6) and the seven f(a) proposed. The results are 
presented in Tables 2-8; r is the correlation coefficient, i the intercept and 
m the slope of the obtained straight lines. 

As can easily be seen, in all cases the correlation coefficient, r, is very 
near to unity, in accordance with the results of Criado et al. [lo]. Neverthe- 
less, only when the analysis was performed with the appropriate f(a), the 
straight line intercepts the origin. Therefore, the intercept value close to zero 
can be used to select the best f(a). In addition, the calculated gradients show 

TABLE 2 

Analysis of the data corresponding to a reaction with f( (u) = 1/2cy (mechanism Dl) 

r 1 m 

employed 

Dl - 0.99999 - 0.0036 - 15066.5 
D2 - 0.99997 - 0.427 - 15171.5 
D3 - 0.99998 - 0.935 - 15159.6 
D4 - 0.99998 - 0.602 - 15159.6 
Fl - 0.99995 -1.0 - 7137.2 
R2 - 0.99995 -0.5 - 7137.2 
R3 - 0.99995 - 0.667 - 7137.2 
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TABLE 3 

Analysis of the data corresponding to a reaction with f( cy) = ( - ln(1 - a))-’ (mechanism D2) 

f(a) r i m 

employed 

Dl - 0.99997 0.413 - 14985.8 
D2 - 0.99999 - 0.0004 - 15090.9 
D3 - 0.99998 -0.51 - 15878.8 

D4 - 0.99998 - 0.177 - 15078.8 
Fl - 0.99991 - 0.695 - 7128.1 
R2 - 0.99991 - 0.195 - 7128.1 
R3 - 0.99991 - 0.362 - 7128.1 

TABLE 4 

Analysis of the data corresponding to a reaction with f(a) = 3/2(1- ar)*13(1 - (1- (Y)~/~)-~ 
(mechanism D3) 

f(a) 
employed 

r i m 

Dl - 0.99996 0.893 - 14922.4 
D2 - 0.99999 0.514 - 15101.8 
D3 - 0.99999 - 0.0005 - 15080.6 
D4 - 0.99999 0.333 - 15080.6 
Fl - 0.99998 - 0.329 - 7176.2 
R2 - 0.99998 0.171 - 7176.2 
R3 - 0.99998 0.04 - 7176.2 

TABLE 5 

Analysis of the data corresponding to a reaction with f( cx) = (3/2(1- (Y)-‘/~ - l)-’ (mecha- 
nism D4) 

f(a) 
employed 

r i m 

Dl - 0.99988 0.537 - 14763.8 
D2 - 0.99999 0.185 - 15134.7 
D3 - 0.99999 - 0.333 - 15089.6 
D4 - 0.99999 0.0007 - 15089.6 
Fl - 0.99997 - 0.579 - 7098.4 
R2 - 0.99997 - 0.08 - 7098.4 
R3 - 0.99997 - 0.246 - 7098.4 

a very good agreement with the postulated value (for E = 125.4 kJ mol-‘, 
E/R = 15083 K). 

Once the mechanism was established, the pre-exponential factor can be 
calculated by applying the method of Achar et al. [9], based on the 
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TABLE 6 

Analysis of the data corresponding to a reaction with f(a) = 1 - (Y (mechanism Fl) 

f(a) r i m 

employed 

Dl - 0.99999 1.389 - 30681.4 
D2 - 0.99999 0.989 - 30922.1 
D3 - 0.99999 0.478 - 30894.4 
D4 - 0.99999 0.811 - 30894.4 
Fl - 0.99997 - 0.009 - 15004.6 
R2 - 0.99997 0.489 - 15004.6 
R3 - 0.99997 0.323 - 15004.6 

TABLE 7 

Analysis of the data corresponding to a reaction with f(a) = 2(1- (Y)“’ (mechanism R2) 

f(a) r i m 

employed 

Dl - 0.99998 0.676 - 30774.2 
D2 - 0.99999 0.273 - 31062.3 
D3 - 0.99999 - 0.238 - 31029.2 
D4 - 0.99999 0.095 - 31029.2 
Fl - 0.99999 -0.5 - 15102.8 
R2 - 0.99999 - 0.0001 - 15102.8 
R3 - 0.99999 - 0.167 - 15102.8 

TABLE 8 

Analysis of the data corresponding to a reaction with f(o) = 3(1- a)2/3 (mechanism R3) 

f(a) 
employed 

r i m 

Dl - 0.99999 0.905 - 30618.9 
D2 - 0.99999 0.49 - 30843.3 
D3 - 0.99999 - 0.019 - 30817.8 
D4 - 0.99999 0.314 - 30817.8 
Fl - 0.99996 - 0.349 - 14950.9 
R2 - 0.99996 0.151 - 14950.9 
R3 - 0.99996 - 0.005 - 14950.9 

expression 

=,+& (8) 

and employing the f(a) previously established. Table 9 summarizes the 
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TABLE 9 

Results of the kinetic analysis of the seven simulated processes: (1) calculated by the 
proposed method: (2) calculated by Achar’s method (E/R in K, A in s-t) 

Mechanism E/R (1) E/R (2) A,‘1013 

Dl 15066.5 15087.3 1.01 
D2 15090.9 15088.6 1.01 
D3 15080.6 15084.8 1.0 

D4 15089.6 15083.3 1.0 
Fl 15004.6 15096.2 1.03 
R2 15102.8 15102.6 1.05 
R3 14950.9 15080.2 0.994 

results obtained from our method, and by application of Achar’s method. 
The values for A were also very close to the postulated value of 1Or3 s-r. 

CONCLUSION 

The proposed method allows the determination of the mechanism of a 
decomposition reaction for solids, and leads to reliable kinetic parameters, 
using the TG and DTG results obtained in a single run with linear 
progression of temperature. 
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